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Abstract Mixed-integer nonlinear programming (MINLP) problems involving general
constraints and objective functions with continuous and integer variables occur frequently in
engineering design, chemical process industry and management. Although many optimiza-
tion approaches have been developed for MINLP problems, these methods can only handle
signomial terms with positive variables or find a local solution. Therefore, this study pro-
poses a novel method for solving a signomial MINLP problem with free variables to obtain
a global optimal solution. The signomial MINLP problem is first transformed into another
one containing only positive variables. Then the transformed problem is reformulated as a
convex mixed-integer program by the convexification strategies and piecewise linearization
techniques. A global optimum of the signomial MINLP problem can finally be found within
the tolerable error. Numerical examples are also presented to demonstrate the effectiveness
of the proposed method.

Keywords Global optimization · Mixed-integer nonlinear programming · Free variable ·
Convexification

1 Introduction

Mixed-integer nonlinear programming (MINLP) problems involving both continuous and
discrete variables arise in many applications of engineering design, chemical engineering,
process operations research and management. These applications are extensively surveyed in
[12,14,26], for example, synthesis and design of separations [1–4], nonisothermal complex
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reactor networks [20], phase equilibrium [28] and mass-exchange networks [29]. Biegler and
Grossmann [7] provided a retrospective on optimization techniques that have been applied in
process systems engineering. They indicated that design and synthesis problems have been
dominated by nonlinear programming (NLP) and MINLP models. Floudas et al. [13] pre-
sented an overview of the research process in global optimization during 1998–2003, includ-
ing the deterministic global optimization advances in MINLPs and related applications. With
the increasing reliance on modeling optimization problems in practical problems, a number
of theoretical and algorithmic contributions of MINLP have been proposed. However, these
problems often include nonconvex functions that can not be dealt with by the standard local
optimization techniques to guarantee global optimality. For treating the nonconvexities in
MINLP problems, the methods developed can be divided into two approaches:

(i) Stochastic methods: The stochastic methods involve random elements in their search and
rely on a statistical argument to prove their convergence. For instance, Salcedo et al. [32]
proposed an improved random search algorithm for solving nonlinear optimization prob-
lems. Hussain and Al-Sultan [19] proposed a hybrid algorithm for nonconvex function
minimization by utilizing the genetic technique to generate search directions. Yiu et al.
[39] developed a hybrid descent approach based on a simulated annealing algorithm and
a gradient-based method to solve multidimensional nonconvex continuous optimization
problems. The heuristic technique is a variant of stochastic methods, for instance, the
tabu search technique [16]. The set of all candidate solutions that can be generated in
a given iteration should not only depend on the current iteration point but should also
be modified by excluding a subset of candidate solutions called tabu. The definition of
which candidate solutions are tabu depends on the moves that have been made between
recent iteration points. Although the tabu search has been found to be more effective than
simulated annealing or genetic algorithm, these stochastic methods mentioned above can
not guarantee to find the global optimum. Therefore, the quality of the solution is not
ensured. Moreover, the probability of finding the global solution decreases when the
problem size increases.

(ii) Deterministic methods: In a general survey of optimization techniques [7,17,18], many
deterministic methods for convex MINLP problems have been reviewed. The methods
include branch and bound (BB) [9,22,33], generalized benders decomposition (GBD)
[15], outer-approximation (OA) [10,11,31], extended cutting plane method (ECP) [37],
and generalized disjunctive programming (GDP) [21]. The BB method can find the
global solution only when each subproblem can be solved to global optimality. The
GBD method, the OA method and the ECP method can not solve MINLP problems with
nonconvex constraints or nonconvex objective functions because the subproblems may
not have a unique optimum in the solution process. Lee and Grossmann [21] proposed a
solution algorithm for the GDP models which correspond to discrete/continuous optimi-
zation problems that involve disjunctions with nonlinear inequalities and logic proposi-
tions. The objective functions and the constraints in the GDP problem are assumed to be
convex and bounded. Maranas and Floudas [25] provided a method to generate convex
underestimators for generalized geometric programming problems via the exponential
transformation and linear underestimation of the concave terms. Adjiman et al. [1,2] pro-
posed two global optimization approaches, SMIN-α BB and GMIN-α BB for nonconvex
MINLP based on the concept of branch-and-bound and rely on optimization or interval-
based variable-bound updates to enhance efficiency. Although one possible approach to
circumvent nonconvexities in MINLP models is reformulation, for instance, using the
exponential transformation to treat the generalized geometric programming problems
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in which a signomial term xα
1 xβ

2 is transferred into an exponential term eα ln x1+β ln x2

[12,14,26], the exponential transformation technique can only be applied to strictly
positive variables and is thus unable to deal with nonconvex MINLP problems with free
variables. Pörn et al. [30] introduced different convexification strategies for transform-
ing a nonconvex MINLP problem into a convex problem and solving it by an MINLP
solver. They suggested a simple translation, x + τ = eX , to treat a free discrete variable
x . Nevertheless, inserting the transformed result into the original signomial terms will
bring additional signomial terms and thereby increasing computational complexity.

Although positive variables are adopted frequently to represent engineering and scientific
systems, it is also common to introduce free variables to model the system behavior, such
as stresses, temperatures, electrical currents, velocities and accelerations, etc. Consequently,
deriving a global optimum for the nonconvex MINLP problem with free variables is essential
for real applications. Li and Tsai [23] proposed a technique for treating free variables in gen-
eralized geometric programming problems. Their method necessitates more additional 0–1
variables and constraints, therefore causing heavy computational burden. This paper presents
a generalized method to solve signomial MINLP problems with free variables efficiently. The
advantages of the proposed method over the current signomial MINLP methods mentioned
above are summarized as follows:

(i) Guaranteeing a global optimum: compared with the stochastic methods, the proposed
method is capable of transforming a nonconvex signomial MINLP problem into a con-
vex MINLP program by the convexification strategies and is thus guaranteed to reach
a global optimum.

(ii) Increasing the efficiency: the proposed method utilizes a straightforward substitution
for free variables to cause less additional signomial terms than the Pörn et al. [30]
method and less additional 0–1 variables and constraints than the Li and Tsai [23]
method, thereby significantly decreasing the computational complexity.

The rest of this paper is organized as follows. Section 2 introduces some propositions for
treating free variables. The convexification strategies for signomial terms are analyzed in
Sect. 3. Subsequently, Sect. 4 presents some examples for illustration. After that, conclusion
remarks are made in Sect. 5.

2 Transformation of free variables

The mathematical formulation of a signomial MINLP problem with free variables considered
in this study is expressed as follows:

Minimize f (x, y)

subject to gt (x, y) ≤ 0, t = 1, . . . , T, (1)

x = (x1, . . . , x p, x p+1 . . . , xn), xi ≤ xi ≤ x̄i , (2)

y = (y1, . . . , yq , yq+1 . . . , ym), y
j
≤ y j ≤ ȳ j , (3)

where xi ∈ �+ for 1 ≤ i ≤ p, xi are bounded free variables for p + 1 ≤ i ≤ n, y j are
positive integer/discrete variables for 1 ≤ j ≤ q, y j are bounded integer/discrete variables
for q + 1 ≤ j ≤ m, f (x, y) and gt (x, y) are mixed-integer signomial functions, xi and x̄i

are lower and upper bounds of the continuous variable xi , and y
j

and ȳ j are lower and upper
bounds of the integer/discrete variable y j , respectively.
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For dealing with the free variables, we first use a standard substitution that expresses the
free variable as a function of two non-negative variables as below.

Let : xi = x+
i − x−

i , x+
i , x−

i ≥ 0, for i = p + 1, . . . , n, (4)

y j = y+
j − y−

j , y+
j , y−

j ≥ 0, for j = q + 1, . . . , m. (5)

And nonlinear terms xαi
i and y

β j
j are expressed as

xαi
i = (x+

i )αi + (−1)αi (x−
i )αi , αi ∈ integer, for i = p + 1, . . . , n, (6)

y
β j
j = (y+

j )β j + (−1)β j (y−
j )β j , β j ∈ integer, for j = q + 1, . . . , m. (7)

If x+
i > 0 and x−

i = 0, then xi is positive. Otherwise, if x−
i > 0 and x+

i = 0, then xi is
negative. To prohibit from yielding positive values for x+

i and x−
i simultaneously, we have

the following remark.

Remark 1 A free variable xi can be expressed as xi = x+
i − x−

i , x+
i , x−

i ≥ 0, and x+
i and

x−
i will not be positive concurrently by the following inequalities.

(i) x+
i ≤ x̄iθi ,

(ii) x−
i ≤ xi (θi − 1).

where θi ∈ {0, 1}.
Similarly, integer/discrete free variables y j have the same result.

By means of changing variables, the MINLP problem with free variables can be equiva-
lently solved with another one having non-negative variables. To deal with variables contain-
ing zero, herein we introduce a strictly positive variable x̃+

i . For computer implementation,
x̃+

i ≥ ε0 where ε0 is a zero tolerance. A value below ε0 is considered to be zero. We also set
the feasibility tolerance as ε1. All the constraints are feasible when they are satisfied to within
a prespecified tolerance ε1. For instance, a constraint g(x, y) ≤ 0 is commonly considered
to be feasible if g(x, y) ≤ ε1. In most cases, ε0 ≤ ε1. Consider the following propositions:

Proposition 1 [23] Let x̄i ∈ �+, 0 ≤ x+
i ≤ x̄i , λi ∈ {0, 1}, ε0 ≤ x̃+

i ≤ x̄i , ε0 > 0, then:

x+
i = x̃+

i λi ⇔
{

(i) 0 ≤ x+
i ≤ x̄iλi ,

(ii) x̄i (λi − 1) + x̃+
i ≤ x+

i ≤ x̃+
i .

Proof
If x+

i = 0, then (i) is activated and λi = 0, therefore x̃+
i λi = 0 and x+

i = x̃+
i λi .

If x+
i > 0, then (ii) is activated and λi = 1, therefore x+

i = x̃+
i and x+

i = x̃+
i λi .

The reverse can be proved below.
If x̃+

i λi = 0, then λi = 0 and (i) is activated, therefore x+
i = 0 and x+

i = x̃+
i λi .

If x̃+
i λi > 0, then λi = 1 and (ii) is activated, therefore x+

i = x̃+
i and x+

i = x̃+
i λi .

The above demonstrates that the equivalence of x+
i = x̃+

i λi is established.
Now denote z+ and z̃+ as below:

z+ = xα1
1 · · · x

αp
p (x+

p+1)
αp+1 · · · (x+

n )αn and z̃+ = xα1
1 · · · x

αp
p (x̃+

p+1)
αp+1 · · · (x̃+

n )αn ,

where x̃+
i are positive variables.

From Proposition 1, z+ = xα1
1 · · · x

αp
p (x̃+

p+1λp+1)
αp+1 · · · (x̃+

n λn)αn and it is clear that

z+ = z̃+λp+1 · · · λn, λi ∈ {0, 1}. (8)
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Remark 2 [23] Let λ, λi ∈ {0, 1} for i = p + 1, . . . , n, then:

λ = λp+1λp+2 · · · λn ⇔
⎧⎨
⎩

(i) λ ≤ λi for i = p + 1, . . . n,

(ii) λ ≥
n∑

i=p+1
λi − n + p + 1.

By referring to Remark 2, Eq. (8) becomes

z+ = z̃+λ, λ ∈ {0, 1} . (9)

From Proposition 1, Eq. (9) is equivalent to the following two linear inequalities.

(i) 0 ≤ z+ ≤ z̄λ,
(ii) z̃+ + z̄(λ − 1) ≤ z+ ≤ z̃+.

λ ∈ {0, 1} , z̄ is the upper bound of z+.
According to the above discussions, an MINLP problem with free variables can be totally

transformed into another one containing only strictly positive variables. For finding a global
optimum of the transformed program, next section proposes convexification strategies to
convert the program into a convex MINLP program.

3 Identification of convex terms and convex relaxation strategies

Convexification strategies for signomial terms are important techniques for global optimi-
zation problems. Sun et al. [34] proposed a convexification method for a class of global
optimization problems with monotone functions under some restrictive conditions. Wu et al.
[38] developed a more general convexification and concavification transformation for solv-
ing a general global optimization problem with certain monotone properties. With different
convexification approaches, an MINLP problem can be reformulated into another convex
mixed-integer program solvable to obtain an approximately global optimum. Björk et al. [8]
proposed a global optimization technique based on convexifying signomial terms. They dis-
cussed that the right choice of transformation for convexifying nonconvex signomial terms
has a clear impact on the efficiency of the optimization approach. Tsai et al. [36] also sug-
gested convexification techniques for the signomial terms with three variables. This study
presents generalized convexification techniques and rules to transform an MINLP problem
into a convex mixed-integer program. Consider the following propositions:

Proposition 2 A twice-differentiable function f (x) = c
∏n

i=1 xαi
i , x = (x1, x2, . . . , xn),

c, xi , αi ∈ �, ∀i , is convex if c ≤ 0, xi ≥ 0, αi ≥ 0 (for i = 1, 2, . . . , n), and 1 −∑n
i=1 αi ≥ 0.

Proof Let Hi (x) be the i th principal minor of a Hessian matrix H(x) of f (x). The determi-

nant of Hi (x) can be expressed as det Hi (x) = (−1)i (
∏i

j∈Ji
cα j x

iα j −2
j )(

∏n
j /∈Ji

Ji �=�

x
iα j
j )(1 −

∑
j∈Ji

α j ).
Since det Hi (x) ≥ 0 when c ≤ 0, xi ≥ 0, αi ≥ 0, ∀i , and 1 − ∑n

i=1 αi ≥ 0, Hi (x),
i = 1, 2, . . . , n, are positive semi-definite and f (x) is convex.

Corollary 1 A twice-differentiable function f (x) = c
∏n

i=1 xαi
i , x = (x1, x2, . . . , xn),

c, xi , αi ∈ �, ∀i , is convex if c ≥ 0, xi ≥ 0 and αi ≤ 0 for i = 1, 2, . . . , n.
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For a given signomial term s, if s satisfies Propositions 2 or Corollary 1, then s is a convex
term without any transformation. For instance, s = −x0.2

1 x0.7
2 with x1, x2 ≥ 0 is a convex

term requiring no transformation by Proposition 2, and s = x−1
1 x−2

2 x−1
3 with x1, x2, x3 ≥ 0

is also a convex term by Corollary 1. Denote =̇ as a notation of linear approximation, consider
the following propositions.

Proposition 3 A nonlinear term s = xα1
1 xα2

2 · · · xαn
n , where x1, x2, . . . , xn > 0, αi < 0 (for

i = 1, 2, . . . , k), and αi ≥ 0 (for i = k + 1, k + 2, . . . , n), can be transformed as follows.

(i) s = ∏k
i=1 xαi

i

∏n
i=k+1 z−αi

i ,

(ii) zi + L(−x−1
i ) ≤ 0 for i = k + 1, k + 2, . . . , n,

(iii) x−1
i − zi ≤ 0 for i = k + 1, k + 2, . . . , n,

where L(−x−1
i ) is a piecewise linearization function of a concave term −x−1

i .

Proof L(−x−1
i )=̇ − x−1

i , zi = x−1
i for i = k + 1, k + 2, . . . , n, following (ii) and (iii).

Since zi > 0 and −αi ≤ 0 for i = k + 1, k + 2, . . . , n, s is then a convex term referring
to Corollary 1.

Herein the concept of special ordered set of type 2 (SOS-2) constraints can be utilized
to generate the piecewise linear function L( f (x)) for approximating the concave function
f (x) [27,35]. Since extensive enough relaxation can be tight to the original nonlinear problem
within any predefined accuracy, branching should be performed to close the gap. Branching
schemes for classical SOS Type 2 case can be found for instance in [5,6].

The accuracy of the linear approximation significantly depends on the selection of break
points. More break points can be selected to increase the accuracy of the linear approximation

of f (x). In this study,
∣∣∣ f (x)−L( f (x))

f (x)

∣∣∣ is used to estimate the error in linear approximation. If

f (x) is an objective function and x∗ is the solution derived from the transformed program,

then the linearization does not require to be refined until
∣∣∣ f (x∗)−L( f (x∗))

f (x∗)

∣∣∣ ≤ ε2, where ε2 is

the optimality tolerance. If g(x) < 0 is a constraint and x∗ is the solution, then x∗ is feasible

if
∣∣∣ g(x∗)−L(g(x∗))

g(x∗)

∣∣∣ ≤ ε1 and L(g(x∗)) ≤ ε1, where ε1 is the feasibility tolerance.

Proposition 4 A nonlinear term s = −xα1
1 xα2

2 · · · xαn
n , where x1, x2, . . . , xn > 0, 0 ≤ α1 ≤

α2 ≤ · · · ≤ αk , 0 ≥ αk+1 ≥ αk+2 ≥ · · · ≥ αn and
∑r

i=1 αi < 1 for some largest integer r ,
such that r ≤ k, can be convexified as follows.

(i) s = −∏r
i=1 xαi

i

∏n
i=r+1 zβ

i , β = 1−∑r
i=1 αi

n−r ,

(ii) zi + L(−x
αi
β

i ) ≤ 0 for i = r + 1, r + 2, . . . , n,

(iii) x
αi
β

i − zi ≤ 0 for i = r + 1, r + 2, . . . , n,

where L(−x
αi
β

i ) is a piecewise linearization function of a concave term −x
αi
β

i .

Proof

L(−x
αi
β

i )=̇ − x
αi
β

i , zi = x
αi
β

i for i = r + 1, r + 2, . . . , n, following (ii) and (iii).
Since αi > 0 for i = 1, 2, . . . , r , zi > 0 for i = k + 1, k + 2, . . . , n, β > 0 and∑r
i=1 αi + (n − r)β = 1, s is then a convex term referring to Proposition 2.

Remark 3 A function f (x) = xα for x > 0 is convex when α ≤ 0 or α ≥ 1. f (x) is concave
when 0 ≤ α ≤ 1.
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Remark 4 For a discrete variable y ∈ {d1, d2, . . . , dm} , d j+1 > d j > 0 for j = 1, 2, . . . ,

m − 1, the nonlinear term yα where α is a real constant can be represented as follows by the
concept of special ordered set type 1 (SOS-1)[35]:

yα =
m∑

j=1

dα
j u j , where

m∑
j=1

u j = 1, u j ∈ {0, 1}.

Remark 5 A product term s = u f (x) where f (x) is a linear function is equivalent to the
following linear inequalities:

(i) f (x)(u − 1) + f (x) ≤ s ≤ f (x)(1 − u) + f (x),
(ii) − f (x)u ≤ s ≤ f (x)u,

where u ∈ {0, 1}, s is an unrestricted in sign variable, and f (x) is the upper bound of f (x).

4 Examples

Example 1 Consider the following nonconvex minimization problem:

Minimize x2
1 x−2

2 x3 − 2x0.7
2 x0.2

3 + x4x−2
5 − 2x1 − 4x3

subject to x1 + 6x2 − x3 − 5x4 ≤ 2, (10)

x1.5
3 x4 + 0.5x2 + 3x1 ≤ −10, (11)

−x1 − 0.5x4 + x5 ≤ 6, (12)

−7 ≤ x1 ≤ 5, 1 ≤ x2 ≤ 10, 1 ≤ x3 ≤ 5, 2 ≤ x4 ≤ 8, 2 ≤ x5 ≤ 9,

x1, x2, x4, x5 ∈ �, x3 ∈ Z.

This program is a nonconvex mixed-integer program containing a bounded free variable.
Current exponential transformation methods developed for MINLP problems can not be
adopted to solve this kind of problem. By adopting the proposed method, we can solve this
problem to reach an approximately global optimum. First, we utilize variable substitution
to transform the nonconvex MINLP problem with free variables into another one having
non-negative variables. By Remark 1, x1 = x+

1 − x−
1 , x+

1 , x−
1 ≥ 0. The original problem

becomes as follows:

Minimize (x+
1 )2x−2

2 x3 + (x−
1 )2x−2

2 x3 − 2x0.7
2 x0.2

3 + x4x−2
5 − 2x1 − 4x3

subject to x1 = x+
1 − x−

1 , (13)

x+
1 ≤ 5θ1, (14)

x−
1 ≤ 7(θ1 − 1), (15)

x+
1 − x−

1 + 6x2 − x3 − 5x4 ≤ 2, (16)

x1.5
3 x4 + 0.5x2 + 3x+

1 − 3x−
1 ≤ −10, (17)

−x+
1 + x−

1 − 0.5x4 + x5 ≤ 6, (18)

0 ≤ x+
1 ≤ 5, 0 ≤ x−

1 ≤ 7, 1 ≤ x2 ≤ 10, 1 ≤ x3 ≤ 5, 2 ≤ x4 ≤ 8,

2 ≤ x5 ≤ 9, θ1 ∈ {0, 1}, x2, x4, x5 ∈ �, x3 ∈ Z.

By changing variables, the problem with non-negative variables can be equivalently trans-
formed into another one having positive variables. Herein we introduce two strictly positive
variables x̃+

1 and x̃−
1 as follows:
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0 ≤ x+
1 ≤ 5λ1, (19)

x̃+
1 + 5(λ1 − 1) ≤ x+

1 ≤ x̃+
1 , (20)

0 ≤ x−
1 ≤ 7λ2, (21)

x̃−
1 + 7(λ2 − 1) ≤ x−

1 ≤ x̃−
1 . (22)

For computer implementation, x̃+
1 , x̃−

1 ≥ ε0 where ε0 = 10−7 is a zero tolerance. The sig-
nomial terms z+

1 = (x+
1 )2x−2

2 x3 and z−
1 = (x−

1 )2x−2
2 x3 in the objective function can be

replaced by z̃+
1 = (x̃+

1 )2x−2
2 x3 and z̃−

1 = (x̃−
1 )2x−2

2 x3, respectively, where

0 ≤ z+
1 ≤ z̄λ1, z̃+

1 + z̄(λ1 − 1) ≤ z+
1 ≤ z̃+

1 ,

0 ≤ z−
1 ≤ z̄λ2, z̃−

1 + z̄(λ2 − 1) ≤ z−
1 ≤ z̃−

1 .

Then this program is a nonconvex MINLP program with six positive variables. From Propo-
sition 2, the nonlinear term −2x0.7

2 x0.2
3 is convex. The nonconvex terms can be transformed

as follows:

(i) The nonconvex terms x1.5
3 x4 and x4x−2

5 can be converted into convex terms z−1.5
3 z−1

4
and z−1

4 x−2
5 , respectively, where z3 = x−1

3 and z4 = x−1
4 by Proposition 3. According

to Remark 4, z3 = x−1
3 can be linearized as z3 = u1 + 1

2 u2 + 1
3 u3 + 1

4 u4 + 1
5 u5 where

x3 = u1 + 2u2 + 3u3 + 4u4 + 5u5.
(ii) The nonconvex terms (x̃+

1 )2x−2
2 x3 and (x̃−

1 )2x−2
2 x3 can be transferred into convex

terms e2y+
1 −2y2+y3 and e2y−

1 −2y2+y3 , respectively, where y+
1 = ln x̃+

1 , y−
1 = ln x̃−

1 ,
y2 = ln x2 and y3 = ln x3.

Subsequently, the transformed program is presented as below:
Minimize z+

1 + z−
1 − 2x0.7

2 x0.2
3 + z−1

4 x−2
5 − 2x1 − 4x3

subject to (13), (15)–(22),

z−1.5
3 z−1

4 + 0.5x2 + 3x+
1 − 3x−

1 ≤ −10,

y+
1 = L(ln x̃+

1 ), y−
1 = L(ln x̃−

1 ), y2 = L(ln x2),

y3 = u1 ln 1 + u2 ln 2 + u3 ln 3 + u4 ln 4 + u5 ln 5,

0 ≤ z+
1 ≤ z̄λ1, e2y+

1 −2y2+y3 + z̄(λ1 − 1) ≤ z+
1 ≤ L(e2y+

1 −2y2+y3),

0 ≤ z−
1 ≤ z̄λ2, e2y−

1 −2y2+y3 + z̄(λ2 − 1) ≤ z−
1 ≤ L(e2y−

1 −2y2+y3),

x3 = u1 + 2u2 + 3u3 + 4u4 + 5u5,

z3 = u1 + 1

2
u2 + 1

3
u3 + 1

4
u4 + 1

5
u5,

u1 + u2 + u3 + u4 + u5 = 1,

x−1
4 − z4 ≤ 0, z4 + L(−x−1

4 ) ≤ 0,

ε0 ≤ x̃+
1 ≤ 5, ε0 ≤ x̃−

1 ≤ 7, 1 ≤ x2 ≤ 10, 1 ≤ x3 ≤ 5, 2 ≤ x4 ≤ 8, 2 ≤ x5 ≤ 9,

θ1, λ1, λ2 ∈ {0, 1}, u1, u2, u3, u4, u5 ∈ {0, 1}, x̃+
1 , x̃−

1 , x2, x4, x5 ∈ �+, x3 ∈ Z .

The transformed program above is a convex MINLP program solvable by conventional
MINLP methods. The error evaluation of the piecewise linear approximation of the concave
functions significantly decreases as the number of break points increases. Using 33 break
points to solve this problem by LINGO [24], both the optimality tolerance and the feasibility
tolerance are within the prespecified error 0.001. The globally optimal solution obtained is
(x1, x2, x3, x4, x5) = (−5.353, 4.548, 1, 3.787, 2.541) and the objective value is 2.904. Table 1
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Table 1 Number of variables in the reformulated model of each example

Number of original
variables

Number of additional
continuous variables
in reformulated model

Number of additional
binary variables in
reformulated model

Number of original
variables eliminated
from formulation

Example 1 5 206 206 1

Example 2 2 4 4 1

Example 3 4 202 202 1

lists the number of the original variables in Example 1, the number of the additional continu-
ous variables and binary variables in the reformulated model, and the number of the original
variables completely eliminated from formulation.

Example 2

Minimize x0.5
1 x2 + 3 ln x1

subject to −x1 + x2 ≤ 5,

x0.5
1 − x2 ≤ 6,

x1 ∈ {0.1, 0.5, 0.7, 1.2},−6 ≤ x2 ≤ 4.

This example contains a discrete variable and a free variable which cannot be treated by
the exponential-based methods. The nonlinear terms x0.5

1 x2, 3 ln x1 and x0.5
1 are nonconvex

functions. By Remarks 4 and 5, the problem can be equivalently transformed into a linear
mixed-integer programming problem as follows.

Minimize 0.10.5s1 + 0.50.5s2 + 0.70.5s3 + 1.20.5s4 + 3(u1 ln 0.1 + u2 ln 0.5 + u3 ln 0.7

+u4 ln 1.2)

subject to −0.1u1 − 0.5u2 − 0.7u3 − 1.2u4 + x2 ≤ 5,

u1 + u2 + u3 + u4 = 1,

0.10.5u1 + 0.50.5u2 + 0.70.5u3 + 1.20.5u4 − x2 ≤ 6,

−6ui ≤ si ≤ 6ui , 6(ui − 1) + x2 ≤ si ≤ 6(1 − ui ) + x2, i = 1, 2, 3, 4,

s1, s2, s3, s4 are unrestricted in sign variables, u1, u2, u3, u4 ∈ {0, 1},
−6 ≤ x2 ≤ 4.

The transformed program can be solved by LINGO [24] to obtain the globally optimal
solution (x1, x2) = (0.1,−5.864) and the objective value −8.705 within the optimality tol-
erance 0.001 and the feasibility tolerance 0.001. Table 1 lists the number of variables used
in the transformed model of Example 2.

Example 3

Minimize x1x3
4 − x3 − 0.5x2

1 x4
2

subject to x1x1.5
4 − x2 − x0.5

2 x0.4
3 ≤ 4,

−x1 − 2x2 + x3 ≤ −2,

0 ≤ x1 ≤ 6, 1 ≤ x2 ≤ 10, 1 ≤ x3 ≤ 6, 20 ≤ x4 ≤ 30, x1, x2, x3, x4 ∈ �+.

Example 3 is a nonconvex problem with zero-value lower bound variables that cannot be
treated by current exponential-based methods. The nonlinear terms x1x3

4 , x2
1 x4

2 and x1x1.5
4
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where x1 has a zero-value lower bound can be transformed into another ones with only strictly
positive variables by the proposed method in Sect. 2. Then the transformed terms can be
relaxed by the proposed technique in Sect. 3. Table 1 lists the number of variables used in the
transformed model of Example 3. Although the proposed method requires the addition of new
variables, binary variables and constraints, it can avoid some inaccuracy introduced by just
specifying a small ε > 0 lower bound for x1. Solving this program by the proposed method
with LINGO [24], the globally optimal solution obtained is (x1, x2, x3, x4) = (0, 4, 6, 20)

and the objective value is −6. However, solving this program by just specifying x1 ≥ 0.001,
the globally optimal solution obtained is (x1, x2, x3, x4) = (0.001, 10, 6, 20) and the objec-
tive value is 1.995. This example demonstrates that the importance of the proposed transfor-
mation for treating the issue of lower bound being zero.

5 Conclusions

This study proposes an optimization method for treating a signomial MINLP problem with
free variables to find a global optimum. The techniques of dealing with free variables aim
to change variables and to convert the logical relationship among the variables in a product
term into a set of linear inequalities, which can be merged conveniently into the MINLP
models. Some useful rules to effectively convexify more general signomial terms in MINLP
programs are also presented. Numerical examples are illustrated to support the contributions
of the proposed method.
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